370 research outputs found

    A local branching heuristic for MINLPs

    Full text link
    Local branching is an improvement heuristic, developed within the context of branch-and-bound algorithms for MILPs, which has proved to be very effective in practice. For the binary case, it is based on defining a neighbourhood of the current incumbent solution by allowing only a few binary variables to flip their value, through the addition of a local branching constraint. The neighbourhood is then explored with a branch-and-bound solver. We propose a local branching scheme for (nonconvex) MINLPs which is based on iteratively solving MILPs and NLPs. Preliminary computational experiments show that this approach is able to improve the incumbent solution on the majority of the test instances, requiring only a short CPU time. Moreover, we provide algorithmic ideas for a primal heuristic whose purpose is to find a first feasible solution, based on the same scheme

    Random projections for linear programming

    Get PDF
    Random projections are random linear maps, sampled from appropriate distributions, that approx- imately preserve certain geometrical invariants so that the approximation improves as the dimension of the space grows. The well-known Johnson-Lindenstrauss lemma states that there are random ma- trices with surprisingly few rows that approximately preserve pairwise Euclidean distances among a set of points. This is commonly used to speed up algorithms based on Euclidean distances. We prove that these matrices also preserve other quantities, such as the distance to a cone. We exploit this result to devise a probabilistic algorithm to solve linear programs approximately. We show that this algorithm can approximately solve very large randomly generated LP instances. We also showcase its application to an error correction coding problem.Comment: 26 pages, 1 figur
    • …
    corecore